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quantum chaotic eigenstates and random polynomials
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Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19,
1000 Ljubljana, Slovenia

Received 15 April 1996

Abstract. Local parametric statistics of zeros of Husimi representations of quantum eigenstates
are introduced. It is conjectured that for a classically fully chaotic system one should use
the model of parametric statistics of complex roots of Gaussian random polynomials which
is exactly solvable as demonstrated below. For example, the velocities (derivatives of zeros
of Husimi function with respect to an external parameter) are predicted to obey a universal
(non-Maxwellian) distribution

dP(v)

dv2
= 2

πσ 2
(1 + |v|2/σ 2)−3

whereσ 2 is the mean square velocity. The conjecture is demonstrated numerically in a generic
chaotic system with two degrees of freedom. Dynamical formulation of the ‘zero–flow’ in terms
of an integrable many-body dynamical system is given as well.

1. Introduction

The intense research in the so-called quantum chaology has produced many different
signatures of classical chaos in the corresponding quantum Hamiltonian systems. It has
been found that energy spectra and eigenstates of classically fully chaotic quantum systems
have universal statistical properties which can be described by stochastic models with no
free parameters, like random matrix theory (RMT).

In the Bargmann [11] (or Husimi) representation, eigenstates of quantum systems can
be uniquely represented in terms of complex analytic functions in phase space variables.
Quite recently, it has been proposed [1] that in case of one-dimensional systems (or Poincaré
surface of section reductions of two-dimensional systems [2]), where phase space is two-
dimensional, and one has only one complex variablez = q + ip, any eigenstate can
be uniquely represented by the collection of (complex) zeros of its Bargmann or Husimi
representation. This has been called the stellar representation. It has been found [2] that the
structure of zeros of Husimi representation of an eigenstate is reminiscent of the structure
of classical phase space:

(i) in classically fully chaotic systems the zeros tend to spread uniformly over the whole
classically allowed region of phase space [1];

(ii) in classically integrable systems the zeros lie on one-dimensional anti-Stokes curves
[1];

(iii) while in generic mixed systems a part of zeros uniformly cover chaotic components
of classical phase space, zeros in regular islands lie along one-dimensional classically
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invariant curves—tori, while substantial part of zeros lie on one-dimensional classically
non-invariant (generalized anti-Stokes) curves.

In the following we shall be interested only in the case of classically fully chaotic
systems. Let us assume that the Hamiltonian of our chaotic system can be statistically
described by Gaussian orthogonal/unitary (in the presence/absence of anti-unitary symmetry)
random matrix in a generic basis. If we choose the harmonic basis then the Bargmann
representation of an arbitrary eigenstate is given by the entire function

f (z) =
∞∑

n=0

cn√
n!

zn (1)

and the Husimi representation in appropriately scaled units is|f (z)|2 e−|z|2, wherez = q+ip.
cn are the coefficients of the expansion of that eigenstate in the harmonic basis, which are, by
assumption and hence according to RMT, real/complex Gaussian (pseudo) random variables.
Ideally, as RMT predicts, there should be no correlations among them

〈
cnc

∗
m

〉 = δnm,
although we believe that for non-zero short-range correlations among the coefficientscn

our general conclusions are still valid. Since the Taylor expansion off (z) around an
arbitrary pointz0 is convergent, one may define and study Gaussian random polynomials
of order N and the statistical properties of their roots and, in the end if neccesary, take
the ‘thermodynamic’ limitN → ∞ (in a sense of increasing number of zeros—quasi-
particles) of Gaussian random holomorphic functions (1). The limitN → ∞ is in fact
compatible with a semiclassical limit ¯h → 0 since the orderN of a Taylor polynomial
approximating a Bargmann function (and its zeros) should be at least equal to the number of
basis states covering the classically accessible areaA of phase space (or surface of section),
N > A/(2πh̄), while higher coefficientsaN+n, n > 0, vanish rapidly with increasingn.
One can also consider cases of different geometry, for example of kicked spinj systems,
where quantum (eigen)states can be exactly represented in terms of the so-called SU(2)
polynomials of finite order 2j [12, 13].

It has been shown recently by Hannay [3] for the case of complex coefficients and
supplemented by Prosen [4] for the case of real coefficients that the statistics of zeros of
Gaussian random polynomials are exactly solvable and allk-point correlation functions can
be given in terms of simple analytical formulae. It has been demonstrated [5, 6] that the
results obtained by random polynomials indeed reproduce the statistics of zeros of Husimi
representations of chaotic eigenstates.

It is the aim of this paper to introduce the local parametric statistics of zeros of Husimi
representations of the quantum eigenstates. Let us take a family of Hamiltonian systems
which smoothly depend upon an external parameterλ. Then the Bargmann representation
of a given eigenstatef (z, λ) and its zeroszn(λ) are also smooth functions of the parameter
λ. Therefore we can introduce the velocitiesvn as derivatives of zeroszn with respect to
an external parameterλ

vn(λ) = d

dλ
zn(λ) = −∂λf (zn, λ)

∂zf (zn, λ)
. (2)

Then we define a parametrick-point correlation function ofk zerosz = (z1, . . . , zk) andk

velocitiesv = (v1, . . . , vk) as

ρ̃k(z, v) = 〈
δ2k(z − z′)δ2k(v − v′)

〉
z′,v′ (3)

where〈〉z′,v′ represents an (ensemble) average over allk-tuples of zerosz′ and corresponding
velocitiesv′ of a given state (or ensemble of states). In other words,ρ̃k(z, v)d2kz d2kv is
a probability to find ak-tuple of zeros and corresponding velocities in a small 4k-cube of
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volume d2kz d2kv around point(z, v). Integrating out the velocities one should obtain the
usualk-point correlation functionρk(z) of zeros only [3, 4]

ρ(z) =
∫

d2kv ρ̃(z, v). (4)

We show below, in section 2, that this parametric correlation function can be explicitly
calculated for Gaussian ensembles of parameter-dependent random polynomials with either
complex or real coefficients. In section 3, we shall verify our conjecture that the obtained
result on parametric statistics of roots of statistical ensembles of random polynomials may
be applied to quantum chaotic systems by presenting some numerical results obtained in
a generic chaotic system, namely the two-dimensional semi-separable oscillator [2, 7]. In
section 4, we write a closed system of ‘equations of motion’ for the zero-flowzn(λ) for the
simplest, linear parametric dependence of the coefficientsan, and stress the integrability of
the underlying dynamical system.

2. Parametric statistics of roots of Gaussian random polynomials

2.1. Complex coefficients

In this section we study parametric statistics of statistical ensembles of Gaussian random
polynomials. In the first subsection we are dealing with the case of complex coefficients
while the slightly more complicated case of real coefficients will be dealt with in the next
subsection. Let us write a random polynomial of orderN in a form

f (z, λ) =
N∑

n=0

an(λ)zn (5)

where the coefficientsan(λ) (for a fixed realization) may depend smoothly on an external
parameterλ. We will only need first derivatives with respect toλ so the parametric statistical
Gaussian ensemble of random polynomials is completely specified by fixingλ and saying
that an and∂λan are complex Gaussian random variables with prescribed covariances〈

ana
∗
m

〉 〈
an∂λa

∗
m

〉 〈
∂λan∂λa

∗
m

〉
which need not be further specified for the statement of the general result. Fixing the two
k-tuples of complex numbersz andv, we define the 3k linear combinations of 2(N + 1)

Gaussian random variablesan, ∂λan, n = 0, . . . , N

fj = f (zj , λ) =
N∑

n=0

anz
n
j (6)

f ′
j = ∂zf (zj , λ) =

N−1∑
n=0

(n + 1)an+1z
n
j (7)

f̃j = d

dλ
f (zj , λ) = f̄j + vjf

′
j f̄j = ∂λf (zj , λ) =

N∑
n=0

∂λanz
n
j (8)

which are again Gaussian random variables. The joint probability distribution of 3k random
variablesξ = (f , f ′, f̃) can be therefore written as

P(f , f ′, f̃) = 1

π3k detM̃
exp(−ξ∗ · M̃

−1
ξ) (9)
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whereM̃ = M̃(z, v) is 3k × 3k Hermitian covariance matrix which is written in a block
form as

M̃ = 〈
ξ ⊗ ξ∗〉 =

( A B D̃
B† C Ẽ
D̃

†
Ẽ

†
F̃

)
(10)

Ajl = 〈
fjf

∗
l

〉
Bjl = 〈

fjf
′
l

∗〉
Cjl = 〈

f ′
j f ′

l

∗〉 (11)

D̃jl =
〈
fj f̃

∗
l

〉
Ẽjl =

〈
f ′
j f̃ ∗

l

〉
F̃j l =

〈
f̃j f̃

∗
l

〉
. (12)

Note that tilded symbols are used to denote matrices (or vectors or scalars) which explicitly
depend on the parametric velocitiesv. k-tuple z are the zeros iff = 0, andk-tuple v
are the velocities if in additioñf ≡ (d/dλ)f = 0. So the parametrick-point correlation
function (3) can be written as a linear transformation of a joint distributionP(ξ)

ρ̃(z, v) =
∫

d2kf ′ ∂(f , f̃)

∂(z, v)
P (0, f ′, 0) (13)

= 1

π3k det M

∫ k∏
j=1

d2f ′
j |f ′

j |4 exp
(
−f ′∗ · L̃

−1
f ′

)
(14)

where∂(f , f̃)/∂(z, v) = ∏k
j=1 |f ′

j |4 is the Jacobian of the mapping(z, v) → (f , f̃), and

L̃ = C − B†A−1B − (Ẽ − B†A−1D̃)(F̃ − D̃
†
A−1D̃)−1(Ẽ

† − D̃
†
A−1B) (15)

is the centralk × k block of the inverse of covariance matrix,M̃
−1

. The dependence on
positions of zerosz and velocitiesv is buried in the definitions of the matrices (10–12). In
general, the dependence on velocities can be made explicit in the following way. Writing
a diagonal velocity matrix as V= diag{vj , j = 1 . . . k} and using a definition (8) one can
observe that the covariance matricesD̃, Ẽ, F̃ have a simple velocity dependence which can
be written in terms of their velocity-independent counterparts D, E, F

D̃ = D + BV† Djl = 〈
fj f̄

∗
l

〉
Ẽ = E + CV† Ejl = 〈

f ′
j f̄ ∗

l

〉
(16)

F̃ = F + E†V† + VE + VCV† Fjl = 〈
f̄j f̄

∗
l

〉
.

This relation can be used to prove that the determinant of the covariance matrix does not
depend on velocities

detM̃ = det M (17)

where the 3k × 3k matrix M is obtained fromM̃ by replacing the blocks̃D, Ẽ, F̃ by D, E, F.
Using some elementary algebra one can rewrite the matrixL̃ in the form which makes
velocity dependence explicit

L̃
−1 = G−1 + (V† + G−1K)(H − K†G−1K)−1(V + K†G−1) (18)

where we have introduced the matrices

G = C − B†A−1B = G†

H = F − D†A−1D = H† (19)

K = E − B†A−1D.

The representation of parametric correlationsρ̃k in terms of moments of a Gaussian (14)
is very convenient since it may be explicitly evaluated as the sum of all possible pairwise
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contractions of integration variablesf ′
j (Wick theorem) and expressed in a compact form

following an approach of Hannay [3]

ρ̃k(z, v) = detL̃

π2k det M
per

(
L̃ L̃
L̃ L̃

)
(20)

where the permanent of a square matrix perS = ∑
p

∏
j Sjpj

is a symmetric analogue of
a determinant detS = ∑

p(−)p
∏

j Sjpj
where p are permutations with signatures(−)p.

Integrating out the velocities, which can be done by putting expression (18) into (14) and
evaluating the inner Gaussian integrals in terms of new variablesuj = vjf

′
j , one obtains

the k-point correlation function of Hannay [3]

ρk(z) = per G

πk det A
. (21)

The formula (20) is a general result on parametric statistics of Gaussian random polynomials
with complex coefficients. Its important feature is purely algebraic dependence on velocities
in contradistinction with, for example, parametric energy level statistics (see e.g. [8], ch 6)
where velocities have a Maxwellian distribution since the Hamiltonian of the energy level
flow can be clearly written as the sum of the usual kinetic and potential part.

In the important special case where (the coefficients of) the random polynomial and its
parametric derivative are statistically uncorrelated〈

an∂λa
∗
m

〉 = 0 (22)

we obtain parametric correlation functions which are invariant under the change of sign of
velocitiesρ̃k(z, −v) = ρ̃k(z, v) since E= D = K = 0 and therefore

L̃
−1 = G−1 + V†F−1V.

In other words, the average velocity (and all its odd moments) is zero〈v〉 = 0. In this case,
the determinant of the 3k × 3k covariance matrix also has a simple factorization in terms
of k × k matrices

det M = det A det G det F.

Since the two-point parametric correlation function depends on four complex arguments
it may be useful to also define the two-point velocity moments of the parametric correlation
functions 〈

vk
1v

l
2v

∗
1
m
v∗

2
n
〉 = 1

ρ2(z1, z2)

∫
d2v1 d2v2 vk

1v
l
2v

∗
1
m
v∗

2
n
ρ̃2(z1, z2, v1, v2) (23)

which are different from zero only ifk + l = m + n and finite if k + l + m + n 6 4. The
non-trivial velocity moments, which still depend on the positions of two zerosz1 and z2,
can be calculated using the Wick theorem from the representation (14). Let us quote the
results for the driftless case (22)〈

v1v
∗
2

〉 = G21F12/(G11G22 + G12G21) (24)〈|v1|2|v2|2
〉 = (F11F22 + F12F21)/(G11G22 + G12G21) (25)〈

v2
1v

∗
2

2
〉
= 2F 2

12/(G11G22 + G12G21). (26)

So far the correlations between the coefficients of random polynomialsan, ∂λan have
been completely arbitrary! Now we specialize to the case where coefficients of random
polynomials areδ-correlated〈

ana
∗
m

〉 = δmnbn

〈
∂λan∂λa

∗
m

〉 = δmnb̄n (27)
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where the variancesbn, b̄n are still arbitrary. Introducing two polynomials

g(s) =
N∑

n=0

bns
n ḡ(s) =

N∑
n=0

b̄ns
n (28)

the relevant matrices can be expressed as

Ajl(z) = g(zj z
∗
l ) (29)

Bjl(z) = zjg
′(zj z∗

l ) (30)

Cjl(z) = g′(zj z∗
l ) + zj z

∗
l g

′′(zj z∗
l ) (31)

Fjl(z) = ḡ(zj z
∗
l ). (32)

Putting k = 1, one-point parametric statistics can be explicitly written in an elegant
factorized form

ρ̃1(z, v) = ρ1(z)
ν̃(v/σ (z))

σ 2(z)
(33)

where

ρ1(z) = 1

π

d

ds
s

d

ds
logg(s)

∣∣∣
s=|z|2

(34)

is a general density of zeros as can be deduced from [3] and

ν̃(v) = 2

π

(
1 + |v|2)−3

(35)

is a universal velocity distribution normalized to a unit mean square andσ 2(z) = 〈|v|2〉 is a
mean square velocity which is inversely proportional to the density of zeros

σ 2(z) = ḡ(|z|2)
g(|z|2)

1

πρ1(z)
. (36)

So, the theory of random polynomials predicts a universal form of a velocity distribution
(35) when it is locally rescaled to a unit mean square local velocity.

In the case of eigenstates of RMT in the Bargmann representation one hasbn =
1/n!, b̄n = σ 2/n! and N → ∞, so

g(s) = exp(s) ḡ(s) = σ 2 exp(s) (37)

and therefore the density distribution and the local mean square velocity are constant,
ρ1(z) = 1/π,

〈|v|2〉 = σ 2, so one has

ρ̃1(z, v) = 2

π2σ 2

(
1 + |v|2/σ 2

)−3
. (38)

In this, probably the most important, particular case we are also able to give some details of
the two-point parametric correlation functionρ̃2(z1, z2, v1, v2) which is only a function of the
four real quantities instead of eight: the distance between roots|z2 − z1|, magnitudes of the
velocitiesu1 = |v1|, u2 = |v2| and the angle between velocitiesφ = arccos(Rev1v

∗
2/|v1v2|).

Writing s = |z2 − z1|2 and fixing the velocity scale by puttingσ = 1 we may express two-
point parametric correlations as

ρ̃2 = 4(es − 1)5α5(β2 + γ 2 + 4βγ )

π2(β − γ )5
(39)

α = e2s − (s2 + 2) es + 1

β = es((es − 1)(es − 1 − s) + αu2
1)((e

s − 1)(es − 1 − s) + αu2
2)

γ = e2s(es − 1)2(e−s − 1 + s)2 + α2u2
1u

2
2 − 2α es(es − 1)(e−s − 1 + t)u1u2 cos(φ).
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Since this expression is quite complicated it is worthwhile to study its asymptotics for large
and small distances

√
s between the roots. The first two non-zero terms of the smalls

expansion are

ρ̃2 = 48

π4(2 + |v1 + v2|2)5
s2 + 8(|v2

1 − v2
2|2 − 8|v1 − v2|2)

π4(2 + |v1 + v2|2)6
s3 + O(s4). (40)

For larges asymptotics in the leading term, as we expect, the two velocities are uncorrelated,
while we give also the next term of an expansion in powers of e−s

ρ̃2 = 4

π4

[
1 + 6 e−s

(1 + |v1|2)3(1 + |v2|2)3
+ [s2(|v1|2 − 2)(|v2|2 − 2) + 12s(|v1|2 + |v2|2 − 1)

−9s|v1 + v2|2 − 9|v1 − v2|2][(1 + |v1|2)4(1 + |v2|2)4]−1

× e−s + O(e−2s)

]
. (41)

Note that the smalls expansion (40) should be understood strictly pointwise, while it is
not termwise integrable with respect to velocitiesv1 and v2 as should be the case for the
entire two-point parametric correlation functionρ̃2 (3). It is useful to give also the velocity
moments (23) which in this case depend only on the distance between zeros

√
s and probably

still contain a lot of information about parametric two-point statistics〈
v1v

∗
2

〉 = −σ 2 es(es − 1)(e−s − 1 + s)/ω (42)〈|v1|2|v2|2
〉 = σ 4(es + 1)(es − 1)2/ω (43)〈

v2
1v

∗
2

2
〉
= 2σ 4(es − 1)3/ω (44)

ω = es(es − 1 − s)2 + e2s(e−s − 1 + s)2. (45)

2.2. Real coefficients

In this subsection we discuss the case of parametric statistics of the Gaussian random
polynomials with real coefficients, i.e.an and∂λan are real Gaussian random variables with
prescribed covariances

〈anam〉 〈an∂λam〉 〈∂λan∂λam〉 .

Fixing the two k-tuples of complex numbersz and v we define 6k real random
variables Refj , Im fj , Ref ′

j , Im f ′
j , Ref̃j , Im f̃j , or equivalently, a vector of 3×2k variables

ξ = (f , f ′, f̃) where f = (f1, f
∗
1 , . . . , fk, f

∗
k ), f ′ = (f ′

1, f
′
1
∗
, . . . , f ′

k, f
′
k
∗
), f̃ =

(f̃1, f̃
∗
1 , . . . , f̃k, f̃

∗
k ). The joint distribution ofξ is now again a (real) Gaussian with various

blocks and their derivations of covariance matrices which are now 2k ×2k matrices and are
defined by the same formulae (10)–(12), (16), (18) and (19). Using a straightforward
approach which follows the previous subsection and the derivation of non-parametric
statistics for real coefficients [4] one derives the general formula for the parametrick-point
correlation function of zeros of Gaussian random polynomials with real coefficients

ρ̃k(z, v) = 1

(2π)2k

√
detL̃

det M
sper


L̃1 1 L̃1 1 . . . L̃1 2k L̃1 2k

L̃1 1 L̃1 1 . . . L̃1 2k L̃1 2k
...

...
. . .

...
...

L̃2k 1 L̃2k 1 . . . L̃2k 2k L̃2k 2k

L̃2k 1 L̃2k 1 . . . L̃2k 2k L̃2k 2k

 (46)
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which reduces to the corresponding non-parametrick-point correlation function [4]

ρk(z) = sper G

(2π)k
√

det A
(47)

after velocities are integrated out. Semi-permanent of a square 2m× 2m matrix (introduced
in [4]) is a homogeneous polynomial of orderm of the matrix elements

sper S=
jn 6=ln′∑

j1<...<jm

l1<...<lm

∑
p

m∏
r=1

Sjr+m,lpr
(48)

wherep runs over allm! permutations ofm indices{1 . . . m} and addition of indicesjr +m

should be understood modulo 2m. Note that

sper

((
1 1
1 1

)
⊗ L̃

)
6= sper

(
L̃ ⊗

(
1 1
1 1

))
whereas

per

((
1 1
1 1

)
⊗ L̃

)
= per

(
L̃ ⊗

(
1 1
1 1

))
so the 4k × 4k matrix on the right-hand side of equation (46) cannot be written as(

L̃ L̃
L̃ L̃

)
as in the complex case (20).

Since the case of real coefficients is much more complicated than the case of complex
coefficients we consider only the final and most important specialization, that is of harmonic
random polynomials with real coefficients in the ‘thermodynamic’ limitN → ∞,

〈anam〉 = δnm/n! 〈an∂λam〉 = 0
〈∂λan∂λam〉 = σ 2δnm/n!
g(s) = exp(s) ḡ(s) = σ 2 exp(s).

Then it is easy to see (as in the non-parametric case [4]) that the two cases of real and
complex coefficients are different only when some of the zeroszj are close to the real
(symmetry) axis, whereas in the opposite case, where allzj go away from the real axis,
the parametric statistics for the case of real coefficients converge to parametric statistics for
the complex coefficients. Explicit formulae for one- and two-point parametric correlation
functions for this case are too lengthy to write out, we shall only give an asymptotic
expansion for one-point function close to the real axis (smally = Im z)

ρ̃1(x + iy, u + iw) = 48σy2

π2(σ 2 + 2u2)3/2
− 8σ(u4 + 3u2w2)y4

π2(σ 2 + 2u2)7/2
+ O(y6). (49)

It is interesting to calculate the ‘root mean square’ (RMS) velocity which now depends on
the distance from the real axisy〈|v|2〉 = σ 2 e4y2 − 1

e4y2 − 1 − 4y2
. (50)

The fact that RMS velocity has a singularity arounds = 0,
〈|v|2〉 ∝ s−2, is compatible with

finding that the smalls expansion of the parametric density (49) is not termwise integrable
with respect to the velocity.
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3. Numerical results

The predictions of the theory of random polynomials have been verified on the parametric
statistics of zeros of Husimi representation of eigenfunctions of a generic chaotic
autonomous Hamiltonian system with two freedoms which depend on an external parameter.
We have chosen a recently introduced semiseparable oscillator for which an extremely
efficient quantization scheme exists based on a construction of an exact quantum Poincaré
mapping [2, 7]. The Hamiltonian of the system is the following

H = − 1
2h̄

2∂2
x − 1

2h̄
2∂2

y + 1
2(x − a sign(y))2 (51)

where the configuration space is a strip(x, y) ∈ (−∞, ∞) × [b↓, b↑] with hard walls
and therefore Dirichlet boundary conditions for a wavefunction aty = b↓, b↑. The
system is integrable fora = 0 while for a > 0 the potential becomes discontinuous
and the system becomes increasingly chaotic with increasinga. It has been shown in
[2] that the system is fully chaotic (with possible islands of stability being negligibly
small) for the following values of parameters:a = 0.25, b↑ = 4, b↓ = −11, E =
0.5. For these values and for ¯h = 0.0003 we have calculated a stretch of 16
consecutive eigenstates with sequential quantum number (according to the Thomas–Fermi
rule) ≈ 17 684 000. Then we have calculated a second set of eigenstates according
to the variation of parametersa = 0.25, b↑ = 4 + λ, b↓ = −11 + λ with λ =
5 × 10−7. For each of the eigenstates of the two sets we have calculated the Husimi
representation on the surface of section(x, px) [2], its zeros (only inside a classically
allowed (chaotic) region of phase space) and calculated the variations of zeros with
respect to small variation of the parameter fromλ = 0 to λ = 5 × 10−7. Since the
variation of the external parameterδλ = 5 × 10−7 was small enough, the identification
of corresponding zeros has always been possible and the velocities were numerically
well defined. Assuming the conjecture that the parametric statistics of zeros of Husimi
representation of a chaotic eigenstate should be described by the theory of random
polynomials, only two parameters remain which define the scales, namely the average
density of zerosρ1 (which should be constant inside the classically allowed chaotic

region of surface of section) and the RMS velocityσ =
√〈|v|2〉. The density or the

number of inside zeros is roughly constant for our 16 states while the RMS velocity
σ , which is determined by the sensitivity of a given eigenstate with respect to the
variation of external parameterλ, might exhibit substantial fluctuations. Therefore,
if we want to merge numerical data of all eigenstates together in order to improve
statistics, we should first rescale the data for each individual eigenstate to a unit RMS
velocity.

In figure 1 we plot such a numerical velocity distribution for our stretch of 16
eigenstates which contains velocities for≈ 16 × 1800 = 28 800 zeros (only the zeros
whose distance from the boundary of the classically allowed region of surface of section
was larger than a few mean spacings were taken into account). It is evident that
the agreement with the prediction of theory of random polynomials (35) is statistically
significant.

In order to compare, significantly, the numerical estimate of the parametric two-point
(or higher) statistics with the prediction of the theory of random polynomials one needs data
of a higher statistical quality than those of our numerical experiment. This may be easier
in some explicit one-dimensional quantum maps and we leave it as a challenge for a future
work.
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Figure 1. The numerical velocity distribution of the chaotic semiseparable oscillator (full curve)
(see text for details) as compared to the theoretical velocity distribution (35) based on the theory
of random polynomials (dashed curve). The agreement is highly statistically significant.

4. Zero-flow as an integrable dynamical system

In this section we show explicitly that the flow of zeros of a polynomial with respect to
some external parameterλ interpreted as a fictitious ‘time’ can be written in terms of a
closed set of ‘equations of motion’. We argue that the underlying dynamical system is
completely integrable and construct explicitly the complete set of integrals of motion as
functions of zeros and velocities. This construction should be considered as a polynomial
analogue of Dyson–Pechukas–Yukawa [9, 10] level dynamics of matrices.

Let us consider a polynomial of orderN whose dependence on the external parameter
λ is linear

f (z, λ) =
N∏

j=1

(z − zj (λ)) = f0(z) + λf1(z) (52)

f0(z) =
N∑

n=0

a0
nz

n f1(z) =
N∑

n=0

a1
nz

n

where without essential loss of generality we have assumed that

a0
N = 1 a1

N = 0. (53)

Writing the velocitiesvj = (d/dλ)zj = −f1(zj )/
∏

l 6=j (zj − zl), differentiating with respect
to λ again and using the Lagrange interpolation formula forf1(zj ) andf ′

1(zj ) one arrives at
the simple closed set of equations for 2N complex (or 4N real) dynamical variables, zeros
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zj and velocitiesvj , j = 1, . . . , N ,

d

dλ
zj = vj

d

dλ
vj = 2

∑
k 6=j

vj vk

zj − zk

. (54)

From the construction it is obvious that the underlying dynamical system should be
completely integrable. Writing the polynomial

f (z, λ) =
N∏

j=1

(z − zj ) =
N∑

n=0

(−1)ncn(z1, . . . , zN)zN−n (55)

in terms of fully symmetric homogeneous functions

cn(z1, . . . , zN) =
|A|=n∑

A⊂{1,...,N}

∏
j∈A

zj (56)

one easily sees that their derivatives

In(z1, . . . , zN , v1, . . . , vN) = d

dλ
cn(z1, . . . , zN) =

N∑
j=1

vj∂zj cn (57)

are just proportional to the coefficients of the constant polynomialf1(z) = ∂f/∂λ (see
equations (52) and (55))

In = (−1)na1
N−n (58)

and are therefore independent non-trivial (complex) constants of motion, forn = 1, . . . N .
It seems more difficult to give a simple Lagrangian or Hamiltonian formulation of the
equations (54). Since the system is completely integrable its Lagrange function is not
unique. However, it is easy to show that equations (54) are completely equivalent to
Euler–Lagrange equations for any Lagrange functionL(z1, . . . , zN , v1, . . . , zN) which can
be written in terms of a symmetric (real) and non-degenerate holomorphic function of the
constants of motion and their complex conjugates

L = F(I1, . . . , IN , I ∗
1 , . . . , I ∗

N)

F (I1, . . . , IN , I ∗
1 , . . . , I ∗

N) = F(I ∗
1 , . . . , I ∗

N, I1, . . . , IN)

det
∂2F

∂Ij∂I ∗
k

6= 0. (59)

5. Conclusions

We have defined a new type of local parametric statistics of quantum eigenstates, which
describes the statistical distributions of zeros of Husimi functions and the velocities—
the derivatives of zeros with respect to an external parameter. It has been conjectured
that apart from the scaling parameters (density of zeros and mean square velocity) the
parametric statistics of zeros of a Husimi representation of an eigenstate of a classically
chaotic system should behave universally and should be well described by the ensembles
of Gaussian random polynomials to the same extent as the statistics of energy spectra,
eigenvector components, or matrix elements are described by the ensembles of Gaussian
random matrices. The parametric statistics of roots of Gaussian random polynomials (or
zeros of Gaussian random holomorphic functions) have been solved analytically and their
applicability to simple chaotic Hamiltonian systems has been demonstrated numerically.
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In the case where the dependence upon external parameters is linear the flow of zeros
of an analytic (Bargmann) function has been formulated in terms of a fully integrable
dynamical system, where the external parameter and the zeros are playing the roles of
fictitious time and mutually repelling quasiparticles, respectively. The analytical results
on local parametric statistics presented in the first part of this paper are nothing else but
‘equal-time’ correlation functions of such a dynamical system. The fact that the velocity
distribution (35) is a generalized Lorentzian and not Maxwellian is due to non-separability
of kinetic and potential energy. For example, the two-body case (N = 2) in the centre of
mass framev = v1 = −v2 = 2ż, z = z2 − z1 can be described by the Hamiltonian

H = 1
2|ż|2|z|2 = 1

2|p|2/|z|2
wherep = |z|2ż is a (complex) momentum conjugated to the (complex) coordinatez.

The generalization to the calculation of the most general ‘different-time’ correlation
function—the non-local parametrick-point correlation function

ρ̃(z′, v′, λ) =
〈

k∏
j=1

δ(z′
j − zj (λj ))δ(v

′
j − (d/dλ)zj (λj ))

〉
is straightforward by putting

fj = f (zj , λj ) f ′
j = ∂zf (zj , λj ) f̃j = (d/dλ)f (zj , λj )

instead of (6)–(8) and following the formalism of section 2.
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